
CHAPTER 1

INTRODUCTION

Middleware resides in a layer between the hardware and 

operating system. The term context refers to the change in behavior of 

tlie system through aspects of environment, activity and location of 

die user. The profile of the user is sensed by the sensor node and 

depending on the profile, services are offered to the user. The 

middleware layer is designed between network and transport layer in 

tiie protocol stack. Interoperability among the service discovery 

protocol is attained at the middleware. In all the literature survey 

reviewed, interfaces or plug-in’s are used to build interoperability 

among different heterogeneous platforms. The newly designed 

middleware differs from already existing work as seamless 

interoperability is attained without interfaces or plug-in’s.

1.1 Benefits of Middleware

Middleware provides functionality of transparency, scalability and 

interoperability across dissimilar networks. Middleware is created to 

reduce complexity of the networks. Middleware provides cross 

platform infrastructure to increase the efficiency of search. 

Middleware provides a client server relationship, where there is a 

consumer-producer relationship or peer to peer relationship to 

exchange information. In the proposed work, middleware is designed 

to provide peer to peer relationship. Middleware must be available in 

many platforms and should provide interfaces allowing the same code 

to be used in multiple environments. Middleware solution will have

1



low complexity and transparent interface to provide flexibility, 

maintainability, reusability and portability. Mobile middleware is 

light weighted in order to manage resources, and supports context 

awareness. Proxy middleware send request to proxy to be converted in 

to soap request to improve performance. Web services are used to 

provide service irrespective of location no matter where service 

requestor or provider is located [1],

L2 Existing Standards

Middleware Standards and implementation

COM/DCOM: COM provides interface definition through IDL 

(Interface Definition Language). Protocols are used to communicate 

between objects. DCOM extends to communicate across networks. 

The main disadvantage of DCOM and COM architecture is that the 

core communication are synchronous which are subjected to failures 

very often and all these fixed middleware systems are heavy weight 

implementation systems. So these systems could not be used in 

wireless environments [2].

CORBA: Provides naming, trading and event service through ORB 

protocol and are used to facilitate communication. ORB establishes 

communication in a distributed environment. CORBA provides an 

o eject model to communicate. Interfaces are defined using interface 

definition language. CORBA demands continuous connection which 

cannot be expected in a wireless environment. Moreover CORBA 

cannot fit in limited resource environment [2].

2



RAPP: The reactive adaptive proxy placement architecture provides 

proxy to establish client-server communication. This method uses 

proxy for communication on behalf of mobile host. RAPP provides 

solution for variable bandwidth. Since RAPP uses proxy it incurs 

high overhead [2].

Java RMI Solutions

Simple Object Access Protocol

SOAP is a light weight protocol for distributed environment. It 

is XML based protocol. It consists of three parts: the envelope, a set 

of encoding rules and conventions. SOAP traverses through firewalls 

and provides a solution for serializing. SOAP works on text based 

protocol which consumes bandwidth. But the solutions of SOAP does 

not address terminal mobility and variable bandwidth [3] [4],

Analysis of the Existing Middleware Framework

All the middleware discussed above are for fixed applications. 

None of the solutions are favorable for wireless networks and does not 

address the problem of battery consumption. Most of the middleware 

requires proxy or gateway for the mobile devices to rest on. In order 

to connect the fixed network to wireless environment, the interfacing 

of proxies or gateways are used.

3



1.2.1 Asynchronous Middleware

Tuple Spaces

Tuples in tuple spaces are typed data structures and are like 

objects in object oriented programming. LINDA consists of a single 

tuple space. In an environment where communication links are highly 

infeasible, multiple tuple spaces are created and communication is 

established between tuple spaces by bridging and thereby forms 

L2limbo architecture. The replication of tuple spaces makes 

disconnection accessible. It manages the wireless network problem of 

low bandwidth and addresses migration and minimizes power usage 

to a minimum [2].

LIME

LIME is the extension of LINDA in mobile environment. 

Global context is by means of interface. The tuples are merged in its 

architecture upon arrival at the new mobile space. LIME allows the 

ability to work in context. The functionality of the LIME is similar to 

LINDA in terms of wireless environment [2].

TOTA

TOT A is a context aware middleware that provides distributed 

feature in adhoc spaces. TOTA consist of peer to peer networks and 

each of the networks runs middleware and provides reference to 

reighboring node.

4



Tuple spaces provide good abstractions but could not be applied 

to real world problems. In mobile computing, java spaces are not 

supported and only T-spaces are provided because it has smaller 

footprint. Generally the tuple space operation does not support context 

awareness which is a very important feature of mobile computing. 

There is no provision of reconciliation mechanism in tuple spaces. 

Reconciliation is an important property of the mobile middleware 

system, as the data should be available even when the mobile leaves 

the system [2],

1.2.2 Publish-Subscribe Middleware

Asynchronous publish-subscribe is important for event 

notification. A component subscribes the event and consumes it when 

published. Publish-subscribe allow the message to be exchanged 

based on content. The decoupled nature is well suited for mobility [2].

SIENA

SIENA is a publish subscribe interface. SIENA server acts as 

an access point in providing service. Publisher performs publishing 

through the access point and subscriber uses the access point to 

subscribe the event of interest. SIENA does not help to work in 

wireless environment. It is designed only for fixed networks. The 

disconnection will lead to the lost of events [2].

5



Scalable Events and Real time Mobility (STEAM)

STEAM uses a centralized architecture for small area 

networks. STEAM is an event based model with no separate 

middleware to offer services. Group communication is allowed in 

STEAM. It could be a member publishing to several subscribers [2],

REBECA (Event Based Electronic Commerce Architecture)

REBECA is a content based publish-subscribe architecture. 

This architecture is unsuited for wireless networks.The broker 

architecture is used to transfer the subscriber’s call from one location 

to another when the subscriber moves across the broker [2],

ELVIN

ELVIN is the publish-subscribe architecture for mobile 

environment. The ELVIN can have multiple subscribers 

communicating with publishers. In this architecture, the subscriber 

can also act as producer. It is similar to peer to peer networks. ELVIN 

architecture makes use of proxy so that the client can remain always 

connected to the server and vice-versa through proxy [2],

Analysis of Asynchronous Middleware

Asynchronous middleware are suited for wireless environment. The 

problem of week connection is solved in asynchronous middleware by 

enabling proxy in most networks. Tuple spaces are suited for mobile 

environments and lime is a tuple space middleware that supports

6



communication across heterogeneous platform. Event based publish- 

subscribe provides a good asynchronous middleware model. This 

solution does not address power consumption to a larger extent and 

also the problem of variable bandwidth in a wireless environment is 

not considered. Almost all middleware models address the problem of 

migration, low bandwidth and disconnection in mobile environment. 

None of these middleware discussed above has been designed for 

adhoc environment without fixed infrastructure [2],

1.2.3 Data Sharing Middleware

Data sharing middleware is very essential in mobile 

environment where the disconnection is high and network bandwidth 

is minimum. Data sharing middleware designed for fixed networks 

employs a distinction between server and client where server holds 

large copies of data files and client holds personal cache [2].

BAYOU

Bayou is a middleware that provides communication. It 

enables the communication to be established even when client and 

server are not in the same range. Bayou uses reconciliation technique 

to ensure that all copies of database resides in the server i.e. the server 

receives the replica of all databases and client shares the data of the 

server. It solves the problem of wireless environment i.e. the low 

bandwidth, disconnection and address migration. However a single 

client out of the range of the server cannot access the devices of the 

server. In this architecture the server stores all the data, and client 

accesses the data of the server [2].

7



AdHocFS

AdHocFS is a middleware platform for adhoc wireless 

networks that permits data sharing. The group members share the 

same data. The group members can leave the group at any time. To 

maintain data consistency, a unique token is associated with the 

shared data and the members modify the data using this token. This 

gets automatically modified in the shared data item and the member 

gets the modified data when he tries to access next. In the AdHocFS 

architecture, the data is stored in both the server and client cache and 

so adaptation policy is used to share the data when server or client 

moves out of range of each other. A profile is maintained in each host 

which tells the data that is replicated, the amount of storage and 

estimated time. The replication of data allows the data to be available 

always with any of the node and it provides a good solution to 

wireless environments [5].

XMIDDLE

XMIDDLE is a data sharing middleware that provides both 

reconciliation and replication over adhoc networks. Each devices 

store data in the form of a tree. Access point is located in each device 

that allows the data to be read and modified by peer. The host then 

checks the data modified and later on it gets reconciled. Using XML, 

the data and the meaning are stored. It also shares the context items. 

Sharing of XML trees is very important as it requires extra overhead 

[2].

8



Analysis of Data Sharing System

A data sharing system addresses weak connection, mobility 

and address migration of nodes. Changing data replication solves the 

problem of poor bandwidth and low memory resource. XMIDDLE is 

a data sharing middleware designed to support mobile applications 

that uses replication of data. Replication here refers to duplication of 

data. The files are shared through the tags associated with the XML 

data which incurs extra overhead when compared to standards file 

sharing systems. When replication is involved transmitting large XML 

files may be expensive over low bandwidth wireless networks and 

utilizes more resource [2], This suits well only for collaborative and 

information sharing system. Therefore this system could only be used 

for specialized applications.

1.2.4 Adaptive Middleware

Middleware for fixed networks does not support the property 

of mobile environment and reconfiguration. Mobile environment 

permits context changes and therefore solutions have to be derived to 

change the middleware as the context change. Features could be 

added to the middleware at any time and the middleware gets adapted 

to those features spontaneously [6].

1.2.5 Reflective Middleware

The reflective middleware provides representation for 

introspection and adaptation. The key feature of the reflective 

middleware is meta interfacing and meta-object protocol. The meta 

interfacing is to study the internal features of the middleware and 

meta protocol is used to perform operations on the middleware.

9



OPENORB

OPENORB is the component based middleware and promotes 

technique of reconfigurability, configurability and reuse of 

middleware. OPENORB is structured as a set of configurable and 

reconfigurable component middleware and supports reflection 

through current structure and behavior. The end system is flexible 

middleware System [7].

DYNAMICTAO

DYNAMICTAO is reflective CORBAORB, where TAO is 

portable, flexible and extensible ORB that conforms to different 

aspect of ORB engine. The reflective mechanism supports inspection 

and configuration of the ORB. TAO based models are used in static 

real time applications [2].

FLEXINET

FLEXINET is a component based model that provides 

reflection within the protocol stack. It is based on binding between 

components which is established through policies. FLEXINET is a 

layered protocol stack based on java core language. Complex layer of 

the FLEXINET is used for adding and removing the sub components 

and also allows adaptation in changing environment [2].

10



K-ORB

It is based on CORBA architecture. The K-ORB framework is 

an extension of mobile HOP engine developed in ALICE project. The 

K-ORB framework allows set of resources available at ORB to 

change at run time. K-ORB uses dynamic reconfiguration to tackle 

many of the challenges of mobile computing like disconnection, 

address migration, low bandwidth and small memory [8] [9].

OPEN-COM

The fundamental concept of OPENCOM is interface, 

receptacle and connections. An interface represents a unit of service 

provision. Receptacle describes a unit of service requirement. 

OPENCOM maintains a standard runtime for creating and deleting 

components. Pre-method and post-method support could be added by 

dynamically attaching a component interface [10].

1.2.6 Policy based Middleware

These middleware’s are completely context based and gets 

adapted to the application based context aware systems. These 

middleware generally allows the application to state the rules so that 

the rules could be interpreted by the middleware [2].

ODESSEY

ODESSEY is a file sharing systems and it supports 

mobile clients. It is completely resource usage middleware. When the

11



resource availability gets reduced below the handler value, the handler 

gives the sign and the application need to get accumulated to the 

change [2],

PUPPETTER

It is an adaptive middleware to manage the energy 

consumption of wireless devices. It deals with documents and media 

format. By utilizing the exported API’s of each application, it 

modifies the behavior without access to source code. It is proxy based 

architecture and deals with local and remote proxies. The architecture 

has to bear with the overhead of proxies [2],

LANCASTER Context Architecture

This deals with multiple contexts. So application running on 

one context will affect the other. LANCASTER university has 

considered a large space with adaptive application and context 

attribute. It has the property to be integrated to other middleware 

platforms like event based, object based and tuple spaced. Lancaster 

architecture could not be used in mobile application due to heavy 

overhead incurred by the architecture [2].

CHARISMA

It is a reflective policy based middleware. The Work 

concentrates on issues of context awareness, power, memory capacity 

and external context of network connection, bandwidth, and location 

arwareness. Behavior of the application contains the service, the policy

12



to be applied to service and the context configuration to hold the 

policy. CHARISMA provides the reflective architecture to change the 

policy when needed. CHARISMA also manages the end-system 

resource of the mobile devices. Different policies have different 

functional requirements and different names of resources. Reflection 

also deals with non-functional properties of the resources. 

CHARISMA is a part of reflection and policy based middleware [2].

Analysis of Adaptive Middleware

The fixed middleware does not solves the problem of wireless 

networks like weak connection, address migration and poor 

bandwidth and cannot be adapted to wireless environment. Hence to 

suit this middleware in the wireless environment, adaptive enabled 

reflective middleware has to be used. The adaptive middleware takes 

care of variable resources and variable network problems. But except 

to K-ORB and UIC, none of the adaptive middleware could be used in 

reflective environment. Policy driven methods are best methods to 

support adaptiveness and reflection [2],

The above discussed middleware could not provide a standard 

solution and thereby could not support interoperability and work on 

heterogeneous platforms. For e.g. SOAP and CORBA are used for 

remote method invocation, SLP, UPnP are service discovery protocol 

and SIENA and CEA are for publish-subscribe. All these cannot 

interoperate. Even interoperability across different service discovery 

protocol in heterogeneous environment is not possible. GAIA and 

CENTARUS are the only middleware that supports pervasive 

environments. Hence a need to design a middleware to support

13



heterogeneity issues across platforms and to provide interoperability 

becomes essential.

Tacking Middleware Heterogeneity

The need to solve heterogeneity issues had its origin as 

cifferent middleware does not interact and other service discovery 

and routing protocols used within the middleware also does not 

interoperate. This problem across fixed network is solved with 

bridges. Universal Interoperable Core reflective middleware is 

available to solve the problem in mobile domain.

1.2.7 Web Service Architecture

Web service is an open standard that supports interoperability. 

Web service uses the WSDL language for interfacing. A particular 

service should be implemented in SOAP based agent at a particular 

instant of time and on the next instant it may take up RMI or CORBA. 

The services, or client application using the service continues 

interacting transparently. A centralized architecture is designed in 

WSDL for service discovery. So it becomes a part of fixed network 

interoperable platform [11] [12][2].

Model Driven Architecture

Model driven architecture also supports interoperability in 

fixed domain. It does not support interoperability in wireless domain 

as it cannot foresee changes in heterogeneous environment during the 

life cycle.

14



Middleware Bridges

A Software bridge is used for communication among different 

middleware environments. The bridge takes up the message, marshals 

il and transfers it to the server. Many bridging solutions are available 

between DCOM/CORBA and CORBA/SOAP. OrbixCoMet are 

implementations of DCOM-CORBA bridge. SOAP2CORBA is an 

open source of a fully functional bidirectional SOAP to CORBA 

bridge [2],

Unified Component Meta Model Framework

The unified component metamodel is similar to model driven 

approach but leads to generating of bridges for interoperation. 

Interoperation of components is an expensive operation that must be 

executed for changes in heterogeneous context environment. Dynamic 

nature of mobile environments generates bridges very frequently. It 

makes use of component framework to support interoperability [13].

Analysis of Middleware Bridges

There are two types of bridges - the static bridge and dynamic 

bridge. The static bridge is used for fixed network and does not 

support mobile networks. The dynamic bridges could be applied to 

mobile environments. The insertion of bridges is the concept used for 

fixed environments. But the insertion is very expensive and requires 

heavy overhead in mobile environments.

15



1.2.8 Logical Mobility

Two platforms are used to support interoperability in the 

mobile code environment. Service discovery and service interactions 

are combined in this interoperability, as the client receives both the 

code and service for interaction.

SATIN

SATIN is a low foot print middleware that provides component 

based interoperability. Services are discovered by obtaining the code. 

At the heart of SATIN is the ability to discover the code and it uses a 

higher level language for service discovery. Codes are downloaded in 

the system dynamically and services are retrieved. The capability of 

interoperability is also downloaded when needed.

JINI

Jini makes use of proxy for interaction and though mostly used 

in the RMI environment, it could be used in any service discovery 

environment. The solution of heterogeneity is to wrap codes and make 

use of it when needed. Proxies are used for service discovery. In 

some case complete user interface will be available and in some cases 

it must be invoked remotely [2],

Analysis of Logical Mobility

Logical mobility is the best method of interoperation as the 

application need not know anything about the service they are to

16



interoperate but they make use of code during run time. Both Jini and 

SATIN insist that the user should know the proxy of Jini or the 

abstract service discovery of SATIN. Thus both techniques do not 

address heterogeneity to a larger extent [2],

1.2.9 Universal Interoperable Core

The Universal Interoperable Core is a reflective middleware of 

Dynamic TAO. The middleware supports multiple middleware 

platforms in ubiquitous environment. UIC interacts with the service in 

CORBA and same service in Java RMI and SOAP.

UIC allows interoperability across multiple middleware 

platforms. The components are loaded and unloaded when 

configuration and reconfiguration are done. Interoperability is attained 

by configuration, reconfiguration and loadable libraries at run time.

UIC uses dynamic adaptation and tackles the problem of 

heterogeneity in mobile environments. However the design only 

targets to object oriented architecture. It offers no solution to publish- 

subscribe or data sharing systems [2]. UIC does not solve the problem 

of service discovery protocol heterogeneity and it cannot be used in 

adhoc environments. It could be used only in the environment of 

single service discovery protocol.

Hence in the proposed work, middleware has been developed 

to solve the problem of interoperability across multiple service 

discovery platforms. Proposed middleware is a reflective middleware 

that supports heterogeneous services.

17



Analysis of existing Middleware Heterogeneous Environments

1) A higher level solution does not exist in web services and 

MDA. The higher level abstractions will increase the chance of 

heterogeneity.

2) All the middleware solutions discussed deals with platform 

composed of single discovery protocol. But in wireless 

environment to work with single service discovery protocol is 

difficult. Hence interoperability across multiple service 

discovery protocols is the urgent requirement of wireless 

environment.

3) The bridging architecture of MDA and web services works for 

fixed networks and to bring them in wireless environment is 

difficult. Therefore platform that changes based on the context 

becomes the urgent need.

4) Adaptive middleware to transparently detect functioning of 

both end services becomes the urgent need. For a wireless 

environment context aware reflective middleware that 

transparently detects context at both ends becomes the real 

essential feature.

1.3 Middleware for Smart Environment:

COOL TOWN is a web and content based solution running on 

underlying framework of network technologies. Content based is done 

with URL and is achieved by means of cookies. User context is 

detected by location,identity and browsing capacity. XML description

18



is used to describe the information and the relationship between 

identities that is stored in relationship directories. MUSE is the 

intelligent smart space made intelligent with the help of sensors. 

Generally smart spaces are designed in java and the migration of 

entities from one smart space to another is done with the help of 

sensors. A community can be defined as a set of services. Java space 

is used for sharing in the community pool. All the smart space 

comains are used to track the user movements within the domain. 

Only COOL TOWN helps to sense the user movement in the web. 

Distributed computing concepts allow the access of elements across 

smart spaces. The implementation of JXTA is the only smart space 

domain that allows communications across smart spaces and it is only 

Jxta that supports peer to peer technology. All other spaces are based 

cn client-server applications [14].

1.3.1 SMART SPACE LAB

Smart space is designed to deal with interoperability 

challenges. Reconfigurability is the concept which arises when mobile 

users move and continue to receive the services even in the new 

environment. Issues of service discovery include which equipments 

are available, which services are available and availability of 

computing power and storage capabilities. The smart space laboratory 

has been designed to address the measurements, standards and 

interoperability challenges of smart spaces.

19



Analysis of Smart Environment Middleware

Most of the smart environment middleware’s discussed are 

java enabled middleware. Only the smart space lab project deals with 

interoperability and reflectiveness which is an important property in 

pervasive environment. Seamless service discovery protocol 

interoperability is not dealt with in smart space project. As a result our 

work designs smart spaces enabled on service discovery protocol to 

attain seamless interoperability which is a feature of pervasive 

environment.

J.4 Middleware for Mobile Computing

MICROSOFT .NET FRAMEWORK: .NET is targeted at mobile 

systems. Middleware logically exposes functionality as component of 

r ame space. Middleware addresses heterogeneity and interoperability 

cf system. Design of most of the middleware is targeted to stable 

systems.

GAIA: Physical spaces in GAIA are active spaces. GAIA includes 

cperating system concepts and support event notification, mobility, 

bcation awareness, service discovery and code updates. GAIA 

converts the physical space with ubiquitous programmable 

environments into active spaces. Users can interact across active 

spaces and can move form one active space and get inculcated to the 

ether. It is an event based middleware and each agent performs a 

task. It performs task like service discovery, context deduction etc. 

GAIA uses a central file system to monitor context. It is applicable 

cnly to small scale networks and is not applicable to large scale 

wireless networks.

20



EXORB: It is the distributed and reflective middleware that supports 

configurability and allow replacement of certain concept to adapt to 

changes in environment.

WSAMI: Pervasiveness in WSAMI supports automatic retrieval of 

services. WSDL is the language used in web interface, SOAP 

defines light weight mechanism for information exchange and UDDI 

are used for locating and registering web services. WSAMI 

middleware provides retrieval of matching services in the 

environment [15].

Analysis of Mobile Middleware

GAIA is the only middleware that supports adhoc environment 

and work on active physical spaces. Interoperability features has not 

been added to GAIA. Other middleware’s discussed in mobile 

environment are component, web or proxy based and are not suitable 

for adhoc environments. GAIA works even in pervasive 

environments. The strength of adhoc networks resides in diversity of 

computer networking and growth of wireless over IP. Mobile 

computers and applications are available at any time and space even 

when infrastructure is not available. The wireless device performs 

their own routing topology keeping track of connection between 

nodes. These networks are self established and all the nodes have to 

carry out their function. Nodes must be able to automatically integrate 

with the device and configure them as part of adhoc networks.

Reflectiveness enables application to lesson and perform 

changes in behavior. Specifically, reflection collects details of internal

21



structure and later provides means to dynamically alter the system 

changing the current state and adding new features to the system. It is 

d.fficult to get scalability in adhoc networks especially in peer to peer 

networks due to the limited capacity of memory and temporary 

storage of data.

REMMOC is a pubhsh/subscribe architecture that provides 

support to context, content and subject based filtering. REMMOC 

works on framework of OPENCOM and supports adhoc architecture 

of primitive components. The overall architecture of REMMOC is a 

reflective framework which is divided in to component framework 

that could be configured and automatically reconfigured. REMMOC 

provides two architectural bindings - the service discovery 

architecture and binding architecture. The binding framework 

includes plug-ins for different binding components. Fundamentally 

synchronous or asynchronous middleware can be plugged in the 

framework. Interoperability in REMMOC is brought across different 

heterogeneous middleware [10].

ROVER was designed for solving heterogeneity issue in mobile 

environment. ROVER uses asynchronous call to discover service, 

when devices move in the distributed environment. JEDI allows the 

construction of dynamic tree of network in which members can 

connect and disconnect frequently. Client-server application cannot 

work on ubiquitous environment. Reflective middleware reconfigures, 

inspects and configures at runtime.Reflective middleware is made of 

components of desired profile. RCSM is a context sensitive 

middleware and adapts to object discovery. CORTEX creates entities 

called sentinent object for processing and providing context related

22



information. Sentinent objects are defined as autonomous object that 

smses the environment. Context tool kit framework separates the 

acquisition and presentation of context information from application 

that uses widgets [16]. KONARK is a middleware for discovery and 

delivery of service in multihop adhoc network for service discovery 

[71-

In context aware middleware for adhoc networks, 

asynchronous method of communication is adapted. EMMA is 

message parsing method by means of which message is propagated to 

each host in the network. Using context aware routing protocol, the 

message is not transmitted to all nodes but to single node based on 

context. Use of CAR promises better use of resources and thereby 

better efficiency [18].

NOMAD provides seamless transparent service discovery by 

means of intelligent services. Main aim of NOMAD is to bring 

connectivity with the physical space of user and virtual internet space. 

Personalized user query is accepted by NOMAD and corresponding 

service is obtained in the web by Service Location Protocol, Dynamic 

Host Configuration Protocol and Light Weight Directory Access 

Protocol [19].

Open service discovery architecture enlightens service 

discovery and provides a model for cross technology. Distributed 

information storage and querying are provided as a unified 

representation using inter domain models. Service discovery protocol 

differs in architecture, message pattern, expected operating 

environment, service representation and description.These differences

23



make interoperation difficult. Existing work of internetworking 

include Bluetooth-UPnP, Bluetooth-salutation, Bluetooth-Jini, Jini- 

UPnP, Jini-SLP, Jini-Twine, Salutation-SLP [20].

Already existing service interoperable platform provides service 

interoperability with service ontology. Ontology refers to the formal 

explicit description of the concept which is often conceived as a set of 

entities, relations, instance, functions and axioms. Open service 

gateway initiative based service delivery and management platform is 

used in global health care services. OSGI is an open standard that 

provides horizontal platform for hosting service components in 

service bundles but takes place with the access of API’s [21],

1.5 Review of Work Done and Drawbacks

Most existing middleware is designed for fixed infrastructure 

networks typically operating in a stable environment and use a client- 

server semantic which is not suitable for MANET (mobile adhoc 

networks). Further these middleware are not reflective and are not 

suitable for heterogeneous networks. The middleware design in this 

research adapts to mobile environments, is context aware and 

reflective, and allows interoperability between heterogeneous nodes 

and networks. Another major disadvantage of existing work is that 

lack of interoperability of service discovery protocols, i.e., service 

advertised by a particular discovery protocol is not identified by other 

discovery protocols. For example the service discovered by UPnP 

(Universal plug and play Protocols) cannot be used by the devices 

that supports SLP (Service Location Protocol). Mobile computing 

works on a dynamic environment with devices of variable size and

24



having diverse resources. Other limitations observed in the existing 

works, is that all existing middleware involves plug-in’s or bindings 

which incurs heavy overhead. Designing of middleware across higher 

layers is a challenging task. The major problem is adaptation of 

services on the device of the user.

1.6 Objectives of the Proposed work

In our proposed work services gets automatically deployed in the 

device of the user. The main aim of our work is to design a context 

aware middleware for MANET’s that provides communication across 

heterogeneous platform based on protocol interoperability. Thus the 

main objective of this work is the design of: (i) A novel middleware 

architecture for service delivery in smart spaces (ii) To provide a cross 

layer approach at the middleware between routing and transport layer, 

thereby improving the functionality of middleware (iii) To create peer 

to peer clusters, offering services across smart spaces (iv) To provide 

seamless service discovery across heterogeneous smart space by peer 

to peer optimization (v) To provide security for entire architecture.

1.7 Research work Done in This Thesis

The objective of the research is to design a mobile dynamic 

reflective context aware middleware for protocol interoperability in 

heterogeneous smart spaces and to add features of cross layering, 

clustering and security.

1.7.1 Context Aware Middleware

The novel idea of the proposed middleware is the seamless 

interoperability of protocols. The second goal is to bring together

25



large number of heterogeneous smart spaces. The third important 

property is that the middleware is context dependent.

1.7.2 Smart Spaces

Smart spaces are adhoc networks composed of sensors, 

actuators and other smart and dummy nodes. These smart spaces 

consist of smart nodes that are capable of offering services and 

dummy nodes which are capable of consuming the service offered by 

the smart ones. Each of these smart spaces is built over a service 

discovery protocol. Service discovery protocol has its own means of 

advertising, publishing, and consuming services. In spite of the 

heterogeneity, these spaces are brought together by protocol 

interoperability of the service discovery protocol at the middleware.

1.7.2 Interoperability

Interoperability is a feature where in which heterogeneous 

platforms having different components and functionalities are brought 

together. Spaces designed are mobile, adhoc and sensors enabled 

spaces. Mobile spaces have fixed infrastructure, adhoc spaces does 

not have fixed infrastructure and pervasive spaces are sensor enabled. 

The interoperability feature of service discovery protocol gathers all 

smart spaces together. As route passes through the middleware to 

reach the transport layer, the routing protocol becomes interoperable 

and thereby increases the speed of search and delivery of services. 

The integrity and reductancy are checked by sensors.

26



1.7.4 Cross Layer Approach

Cross layering is an important phenomenon by means of 

which data is transmitted between layers by skipping the intermediate 

layer. The functionality of the intermediate layer is automatically 

taken during transmission even when the layers are skipped. The 

proposed approach also helps to provide dynamic adaptations by 

providing the functionality of platform independency. The routing 

protocols are selected from the routing layer and services are offered 

by the transport layer. Thus the routes are taken seamlessly from the 

routing layer to the transport layer through middleware build upon as 

cross-layer approach.

1.7.5 Service Discovery and Routing Protocols

Service discovery protocols acts as a substratum in the smart 

spece for discovery of service. Service discovery protocols 

considered are - Service Location Protocol, the Universal Plug and 

Play Protocols and Pervasive Discovery Protocol. This Service 

discovery protocol differs from the normal existing protocols due to 

seamless property added to it and the intelligence provided by the 

sensor nodes. The routing protocols considered are Adhoc On-demand 

Distance vector (reactive routing) and Destination Sequence Distance 

Vector routing (proactive routing).

1.7.6 Peer to Peer Clustering

The nodes in the smart space form clusters. There could be any 

number of clusters in each of the smart spaces. The important

27



phenomena dealt with in the architecture are that, only the cluster 

heads of each cluster remains stationary. All other nodes are moving. 

When ever a service is to be provided to the user, the request profile 

of the user seamlessly gets routed to the cluster head of the matching 

service. The cluster head will know the location of the node which 

has moved away from the cluster. Ant colony algorithm with honey 

bee optimization in clustering is applied to obtain optimization while 

routing. The advantage of clustering is that the search becomes easier 

and is less time consuming.

1.7.7 Security

Security is an important feature of all networks and especially 

demands high recognition in wireless adhoc networks, as there are no 

fixed infrastructures in this set up. As the devices moves across the 

networks, there are heavy chances of attacks which demands security. 

Security in the proposed architecture is obtained by the digital 

signature scheme thereby checking the validity of the user.

1.8 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 discusses on the design of mobile dynamic reflective 

context aware middleware for protocol interoperability in 

heterogeneous smart spaces. It also deals on the quantitative 

performance of the proposed middleware in comparison to the 

REMMOC architecture.

28



Chapter 3 discusses on the design of smart spaces at the transport 

layer of the protocol stack. It deals on the design components and on 

the security aspects.

Chapter 4 deals on the interoperability feature which is an important 

property of the middleware. Interoperability is studied in two aspects 

- interoperability of service discovery protocols across heterogeneous 

smart spaces at the middleware and interoperability of the routing 

protocols at the middleware through cross-layer approach.

Chapter 5 deals with the cross layer approach the binds together the 

routing layer with the transport layer in the protocol stack through the 

concept of interoperability at the middleware but without traversing 

the middleware layer.

Chapter 6 discusses in detail the service discovery and routing 

protocol along with their functionality and performances.

Chapter 7 provides a detailed description of architecture of peering 

nodes along with clustering algorithm and also deals with service 

discovery and matching algorithms.

Chapter 8 discusses on the qualitative evaluation of the designed 

architecture taking an application of smart campus and the study of 

the various metrics of protocols on the middleware. The result is 

compared with the performance of message oriented middleware with 

CAR protocol.

29



Chapter 9 concludes the work done in the thesis. It discusses the 

research results of the thesis and also suggests points that can be 

further explored.

30


